Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

$\mathrm{LiHo}\left(\mathrm{PO}_{3}\right)_{4}$

Emna Ben Zarkouna, ${ }^{\text {a }}$ Ahmed Driss ${ }^{\text {a }}$ and Mokhtar Férid ${ }^{\text {b }}$
${ }^{\text {a }}$ Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences, Université
Tunis-El Manar, 2092 El Manar, Tunis, Tunisia, and ${ }^{\text {b }}$ Unité de Matériaux de Terres Rares, Centre National de Recherches en Sciences des Matériaux, BP 95
Hammam-Lif, Tunis 2050, Tunisia
Correspondence e-mail: emna_benzarkouna@yahoo.fr
Received 9 January 2009; accepted 14 January 2009
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{P}-\mathrm{O})=0.004 \AA$; R factor $=0.025 ; w R$ factor $=0.071$; data-to-parameter ratio $=12.8$.

Lithium holmium(III) polyphosphate(V), $\mathrm{LiHo}\left(\mathrm{PO}_{3}\right)_{4}$, belongs to the type I of polyphosphates with general formula $A \operatorname{Ln}\left(\mathrm{PO}_{3}\right)_{4}$, where A is a monovalent cation and $L n$ is a trivalent rare earth cation. In the crystal structure, the polyphosphate chains spread along the b-axis direction, with a repeat period of four tetrahedra and 2_{1} internal symmetry. The Li and Ho atoms are both located on twofold rotation axes and are surrounded by four and eight O atoms, leading to a distorted tetrahedral and dodecahedral coordination, respectively. The HoO_{8} polyhedra are isolated from each other, the closest Ho \cdots Ho distance being 5.570 (1) \AA.

Related literature

For isotypic $\mathrm{Li} \operatorname{Ln}\left(\mathrm{PO}_{3}\right)_{4}$ structures, see: Ben Zarkouna \& Driss (2004) for $L n=Y b$; Ben Zarkouna et al. (2005) for $L n=$ Er; Ben Zarkouna et al. (2007) for $L n=\mathrm{Tb}$. For related structures, see: Amami et al. (2004) ($\left.\mathrm{NaHo}\left(\mathrm{PO}_{3}\right)_{4}\right)$; Palkina et al. (1976) $\left(\beta-\mathrm{KHo}\left(\mathrm{PO}_{3}\right)_{4}\right)$; Tranqui et al. (1972) $\left(\mathrm{HoP}_{5} \mathrm{O}_{14}\right)$. For general background, see: Brown \& Altermatt (1985); Durif (1995); Liu et al. (1999); Palkina et al. (1981); International Tables for X-Ray Crystallography (1968).

Experimental

Crystal data

$\mathrm{LiHo}\left(\mathrm{PO}_{3}\right)_{4}$
$V=886.5$ (4) \AA^{3}
$M_{r}=487.75$
Monoclinic, $C 2 / c$
$a=16.280$ (3) A
$b=7.039$ (2) \AA
$c=9.561$ (2) \AA
$\beta=125.99(2)^{\circ}$

Data collection

Enraf-Nonius CAD-4 diffractometer
Absorption correction: ψ scan
(North et al., 1968)

$$
Z=4
$$

Mo $K \alpha$ radiation
$\mu=9.72 \mathrm{~mm}^{-1}$
$T=293$ (2) K
$0.31 \times 0.14 \times 0.07 \mathrm{~mm}$

1076 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.016$
2 standard reflections frequency: 120 min intensity decay: none

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
84 parameters
$w R\left(F^{2}\right)=0.071$
$\Delta \rho_{\max }=2.75$ e \AA^{-3}
$S=1.12$
1078 reflections

$$
\Delta \rho_{\max }=-3.18 \mathrm{e}^{-3} \AA^{-3}
$$

Table 1
Selected bond lengths (\AA).

$\mathrm{Li}-\mathrm{O} 2^{\mathrm{i}}$	$1.962(9)$	$\mathrm{P} 1-\mathrm{O} 6$	$1.499(3)$
$\mathrm{Li}-\mathrm{O} 6$	$1.999(9)$	$\mathrm{P} 1-\mathrm{O} 4$	$1.589(4)$
$\mathrm{Ho}-\mathrm{O} 3$	$2.287(3)$	$\mathrm{P} 1-\mathrm{O} 5^{\text {iii }}$	$1.594(3)$
$\mathrm{Ho}-\mathrm{O} 1^{\mathrm{i}}$	$2.348(4)$	$\mathrm{P} 2-\mathrm{O} 2$	$1.486(3)$
$\mathrm{Ho}-\mathrm{O} 2^{i i}$	$2.411(3)$	$\mathrm{P} 2-\mathrm{O} 3$	$1.488(3)$
$\mathrm{Ho}-\mathrm{O} 6$	$2.516(3)$	$\mathrm{P} 2-\mathrm{O} 5$	$1.588(3)$
$\mathrm{P} 1-\mathrm{O} 1$	$1.488(4)$	$\mathrm{P} 2-\mathrm{O} 4$	$1.601(4)$
Symmetry codes: (i) $x,-y+1, z-\frac{1}{2} ;$ (ii) $x,-y, z-\frac{1}{2} ;$ (iii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{3}{2}$.			

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček \& Yordanov, 1992); cell refinement: CAD-4 EXPRESS; Macíček \& Yordanov, 1992); data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2216).

References

Amami, J., Horchani, K., Merle, D. \& Férid, M. (2004). J. Phys. IV Fr. 122, 111115.

Ben Zarkouna, E. \& Driss, A. (2004). Acta Cryst. E60, i102-i104.
Ben Zarkouna, E., Férid, M. \& Driss, A. (2005). Mater. Res. Bull. 40, 19851992.

Ben Zarkouna, E., Horchani-Naifer, K., Férid, M. \& Driss, A. (2007). Acta Cryst. E63, i1-i2.
Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
Durif, A. (1995). Crystal Chemistry of Condensed Phosphates. New York: Plenum Press.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
International Tables for X-ray Crystallography (1968). Vol. III, 2nd ed. Birmingham: Kynoch Press.
Liu, G. K., Chen, Y. H. \& Beitz, J. V. (1999). J. Lumin. 81, 7-12.
Macíček, J. \& Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Palkina, K. K., Chudinova, N. N., Litvin, B. N. \& Vinogradova, N. V. (1981). Izv. Akad. Nauk SSSR Neorg. Mater. 17, 1501-1503.
Palkina, K. K., Kuznetsov, V. G., Chudinova, N. N. \& Chibiskova, N. T. (1976). Izv. Akad. Nauk SSSR Neorg. Mater. 12, 730-734.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tranqui, D., Bagieu-Beucher, M. \& Durif, A. (1972). Bull. Soc. Fr. Minéral. Cryst. 95, 437-440.

supplementary materials

Acta Cryst. (2009). E65, i10 [doi:10.1107/S1600536809001767]

$\mathbf{L i H o}\left(\mathbf{P O}_{3}\right)_{\mathbf{4}}$

E. Ben Zarkouna, A. Driss and M. Férid

Comment

The present paper is an extension of our earlier work on polyphosphates of general formula $\operatorname{LiLn}\left(\mathrm{PO}_{3}\right)_{4}[\mathrm{Ln}=\mathrm{Yb}(\mathrm{Ben}$ Zarkouna \& Driss, 2004), Er (Ben Zarkouna et al., 2005) and Tb (Ben Zarkouna et al., 2007)]. This family is now expanded to include the lithium holmium polyphosphate, $\mathrm{LiHo}\left(\mathrm{PO}_{3}\right)_{4}$, which might be of particular interest in the area of luminescent materials, because an avalanche up-conversion emission was observed previously for Ho^{3+}-containing compounds (Liu et al., 1999).

The $\operatorname{LiLn}\left(\mathrm{PO}_{3}\right)_{4}$ polyphosphates are isostructural and belong to form I according to the classification of Palkina et al. (1981). In this type of arrangement, helical ribbons, $\omega_{\infty}\left(\mathrm{PO}_{3}\right)_{\mathrm{n}}$, formed by corner-sharing of PO_{4} tetrahedra, spread parallel to the b axis. The period of the chains corresponds to four tetrahedra but, owing to the presence of 2_{1} screw axes, only two of them are crystallographically independent. The $\mathrm{P}-\mathrm{O}$ bonds involving terminal O atoms are the shortest within a PO_{4} tetrahedron, because of the $\mathrm{d} \pi$-p π orbital overlap (Durif, 1995). In $\mathrm{LiHo}\left(\mathrm{PO}_{3}\right)_{4}$, the mean $\mathrm{P}-\mathrm{O}$ bond lengths for terminal and bridging O atoms, are of 1.490 and $1.593 \AA$, respectively. The $\mathrm{O}-\mathrm{P}-\mathrm{O}$ angles are within the range 101.2 (2)-119.6 (2) ${ }^{\circ}$, the smallest and the largest ones are those involving the longest and the shortest $\mathrm{P}-\mathrm{O}$ bonds, respectively. The $\mathrm{P}-\mathrm{O}-\mathrm{P}$ bridges exhibit angles of 131.6 (2) and $134.8(2)^{\circ}$, larger than the $\mathrm{O}-\mathrm{P}-\mathrm{O}$ angles. The Li and Ho atoms are arranged alternately on twofold rotation axes at roughly similar spacings [3.486 (1) and 3.553 (1) \AA] in comparison with the quite different spacings between K and Ho atoms [3.721 (2) and 8.589 (2) \AA] in $\beta-\mathrm{KHo}\left(\mathrm{PO}_{3}\right)_{4}$ (Palkina et al., 1976). The Ho atom is surrounded by eight terminal oxygen atoms forming a distorted dodecahedron, with an average Ho-O distance of $2.390 \AA$, while the Li atom is located inside an irregular tetrahedron with a mean $\mathrm{Li}-\mathrm{O}$ distance of $1.980 \AA$. All these bond lengths are conform with those mentioned in the literature (International Tables for X-Ray Crystallography, 1968; Durif, 1995; Amami et al., 2004).

By sharing edges, the HoO_{8} and LiO_{4} polyhedra are joined to produce infinite linear chains running along the b axis (Fig. 1), in contrast to crystal structure of $\mathrm{NaHo}\left(\mathrm{PO}_{3}\right)_{4}$ (form II) (Amami et al., 2004) where zigzag chains of face-sharing HoO_{8} and NaO_{8} polyhedra are observed. As shown in Fig. 2, each chain shares corners of its polyhedra with four adjacent polyphosphate chains.

It is noteworthy that no O atom is common to two Ho atoms, and the closest $\mathrm{Ho} \cdots \mathrm{Ho}$ distance of $5.570(1) \AA$ in $\mathrm{LiHo}\left(\mathrm{PO}_{3}\right)_{4}$ is comparable with that found in $\mathrm{HoP}_{5} \mathrm{O}_{14}$ (Tranqui et al., 1972). Bond-valence-sum values (Brown \& Altermatt, 1985) are $0.998,3.054,4.936$ and 4.967 valence units for $\mathrm{Li}, \mathrm{Ho}, \mathrm{P} 1$ and P 2 , respectively, in good agreement with the expected formal charges.

supplementary materials

Experimental

The title compound was prepared in single crystalline form using the flux method. At room temperature, 3 g of $\mathrm{Li}_{2} \mathrm{CO}_{3}$ and 0.5 g of $\mathrm{Ho}_{2} \mathrm{O}_{3}$ were slowly added to 10 ml of $\mathrm{H}_{3} \mathrm{PO}_{4}\left(85 \%_{\mathrm{wt}}\right)$ in a glassy carbon crucible. The resulting mixture was then progressively heated to 573 K and kept at this temperature for 8 days. After cooling to room temperature and removal of the excess phosphoric flux with boiling water, pale yellow crystals of $\mathrm{LiHo}\left(\mathrm{PO}_{3}\right)_{4}$ were separated.

Refinement

The highest peak is located $0.87 \AA$ from Ho and the deepest hole is located $1.00 \AA$ from the same atom.

Figures

Fig. 1. : Alternating arrangement of HoO_{8} and LiO_{4} polyhedra projected along the a axis. PO_{4} tetrahedra are omitted for clarity.

Fig. 2. : Projection of the $\mathrm{LiHo}\left(\mathrm{PO}_{3}\right)_{4}$ structure along the b axis.

Lithium holmium(III) polyphosphate(V)

Crystal data

$\mathrm{LiHo}\left(\mathrm{PO}_{3}\right)_{4}$
$M_{r}=487.75$
Monoclinic, $C 2 / c$
Hall symbol: -C 2yc
$a=16.280$ (3) \AA
$b=7.039(2) \AA$
$c=9.561(2) \AA$
$\beta=125.99(2)^{\circ}$
$V=886.5$ (4) \AA^{3}
$Z=4$

$$
\begin{aligned}
& F_{000}=904 \\
& D_{\mathrm{x}}=3.654 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Mo} K \alpha \text { radiation } \\
& \lambda=0.71069 \AA \\
& \text { Cell parameters from } 25 \text { reflections } \\
& \theta=10.1-14.7^{\circ} \\
& \mu=9.72 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Plate, pale yellow } \\
& 0.31 \times 0.14 \times 0.07 \mathrm{~mm}
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=293(2) \mathrm{K}$
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.095, T_{\text {max }}=0.378$
1500 measured reflections
1078 independent reflections
1076 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.016$
$\theta_{\text {max }}=28.0^{\circ}$
$\theta_{\text {min }}=3.1^{\circ}$
$h=-21 \rightarrow 17$
$k=-2 \rightarrow 9$
$l=0 \rightarrow 12$
2 standard reflections
every 120 min
intensity decay: none

Secondary atom site location: difference Fourier map

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0459 P)^{2}+12.7265 P\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=2.75$ e \AA^{-3}
$\Delta \rho_{\min }=-3.18$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0014 (3)

84 parameters

Primary atom site location: heavy method

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\mathrm{iso}} * / U_{\text {eq }}$
Li	0.0000	$0.708(2)$	0.2500	$0.015(3)$
Ho	0.0000	$0.20312(4)$	0.2500	$0.0073(1)$
P1	$0.13774(8)$	$0.5517(2)$	$0.6157(1)$	$0.0067(2)$
P2	$0.14654(8)$	$0.1504(2)$	$0.6961(1)$	$0.0068(2)$

O1	$0.1137(3)$	$0.7154(5)$	$0.6843(5)$	$0.0118(7)$
O2	$0.0711(3)$	$0.0845(5)$	$0.7255(5)$	$0.0116(6)$
O3	$0.1280(3)$	$0.1150(5)$	$0.5262(4)$	$0.0121(7)$
O4	$0.1568(3)$	$0.3740(5)$	$0.7337(4)$	$0.0107(6)$
O5	$0.2552(2)$	$0.0776(5)$	$0.8526(4)$	$0.0105(6)$
O6	$0.0652(2)$	$0.5022(5)$	$0.4280(4)$	$0.0104(6)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Li	$0.018(6)$	$0.011(6)$	$0.020(7)$	0.000	$0.012(6)$	0.000
Ho	$0.0063(2)$	$0.0076(2)$	$0.0071(2)$	0.000	$0.0034(1)$	0.000
P1	$0.0052(5)$	$0.0069(5)$	$0.0072(5)$	$-0.0002(4)$	$0.0031(4)$	$-0.0001(4)$
P2	$0.0051(5)$	$0.0072(5)$	$0.0073(5)$	$-0.0001(4)$	$0.0032(4)$	$0.0009(4)$
O1	$0.012(2)$	$0.009(2)$	$0.016(2)$	$0.001(1)$	$0.009(1)$	$-0.002(1)$
O2	$0.008(1)$	$0.012(2)$	$0.016(2)$	$0.001(1)$	$0.008(1)$	$0.002(1)$
O3	$0.012(2)$	$0.014(2)$	$0.008(1)$	$0.002(1)$	$0.004(1)$	$0.000(1)$
O4	$0.015(2)$	$0.007(1)$	$0.009(1)$	$0.001(1)$	$0.007(1)$	$0.002(1)$
O5	$0.005(1)$	$0.016(2)$	$0.010(1)$	$0.002(1)$	$0.005(1)$	$0.002(1)$
O6	$0.007(1)$	$0.014(2)$	$0.006(1)$	$-0.001(1)$	$0.001(1)$	$0.000(1)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Li}-\mathrm{O} 2^{\text {i }}$	1.962 (9)	Ho-O6	2.516 (3)
$\mathrm{Li}-\mathrm{O} 2{ }^{\text {ii }}$	1.962 (9)	Ho- $\mathrm{Ob}^{\text {iii }}$	2.516 (3)
$\mathrm{Li}-\mathrm{O} 6^{\text {iii }}$	1.999 (9)	P1-O1	1.488 (4)
Li-O6	1.999 (9)	P1-06	1.499 (3)
Ho-O3 ${ }^{\text {iii }}$	2.287 (3)	P1-O4	1.589 (4)
Ho-O3	2.287 (3)	$\mathrm{P} 1-\mathrm{O} 5^{\text {vi }}$	1.594 (3)
Ho- $\mathrm{Ol}^{\text {ii }}$	2.348 (4)	$\mathrm{P} 2-\mathrm{O} 2$	1.486 (3)
$\mathrm{Ho}-\mathrm{O1}{ }^{\text {i }}$	2.348 (4)	$\mathrm{P} 2-\mathrm{O} 3$	1.488 (3)
$\mathrm{Ho}-\mathrm{O}^{\text {iv }}$	2.411 (3)	$\mathrm{P} 2-\mathrm{O} 5$	1.588 (3)
$\mathrm{Ho}-\mathrm{O}^{\text {v }}$	2.411 (3)	P2-O4	1.601 (4)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Li}-\mathrm{O} 2{ }^{\text {ii }}$	83.7 (5)	O6-P1-O5 $5^{\text {vi }}$	105.0 (2)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Li}-\mathrm{O} 6^{\text {iii }}$	119.57 (14)	$\mathrm{O} 4-\mathrm{P} 1-\mathrm{O} 5^{\text {vi }}$	102.7 (2)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Li}-\mathrm{O} 6^{\text {iii }}$	125.85 (14)	$\mathrm{O} 2-\mathrm{P} 2-\mathrm{O} 3$	119.6 (2)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Li}-\mathrm{O} 6$	125.85 (14)	$\mathrm{O} 2-\mathrm{P} 2-\mathrm{O} 5$	107.9 (2)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Li}-\mathrm{O} 6$	119.57 (14)	$\mathrm{O} 3-\mathrm{P} 2-\mathrm{O} 5$	111.9 (2)
O6 ${ }^{\text {iiii }}$-Li-O6	87.2 (5)	$\mathrm{O} 2-\mathrm{P} 2-\mathrm{O} 4$	104.6 (2)
O1-P1-O6	118.8 (2)	$\mathrm{O} 3-\mathrm{P} 2-\mathrm{O} 4$	109.7 (2)
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 4$	106.8 (2)	$\mathrm{O} 5-\mathrm{P} 2-\mathrm{O} 4$	101.2 (2)
O6-P1-O4	110.8 (2)	$\mathrm{P} 1-\mathrm{O} 4-\mathrm{P} 2$	131.6 (2)
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 5^{\mathrm{vi}}$	111.7 (2)	P2-O5-P1 ${ }^{\text {vii }}$	134.8 (2)

Symmetry codes: (i) $x,-y+1, z-1 / 2$; (ii) $-x,-y+1,-z+1$; (iii) $-x, y,-z+1 / 2$; (iv) $-x,-y,-z+1$; (v) $x,-y, z-1 / 2$; (vi) $-x+1 / 2, y+1 / 2$, $-z+3 / 2$; (vii) $-x+1 / 2, y-1 / 2,-z+3 / 2$.

sup-4

Fig. 1

Fig. 2

